AD-A251 642 rATION PAGE

Form Approved
OMB No 0704-0188

;f I ' 1C 3.€r33€ 1 NTLc Der resplnTIe IPIUGING TRE LM TOr review NT INstruchiTAs seariT I enstrg Sata souries

5 * ' WING TRE (IHeCT I It mezematiIn Send (IMMENts regaraing th s Durden est.mate <7 57, Ltrer aspect of 1

. | er 12 A 3SNiNgITn Hea0aLatters Serices Lorentorate $or niirraticn Operat.cny an hencrty 1,5 etterscr
e At Maragement ang = g0t Paperwers Regurile Proiec1if788.3788) Wasn not D0 (I8

1. AGENCY USE ONLY (Leave blank) IZ. REPORT DATE

3. REPORT TYPE AND DATES COVERED
FINAL 1 Dec 88 - 30 Nov 91

4 "TITLE AND SUBTITLE
THE ACQUISITION & UTILIZATION OF SPATIAL & FUNCTIONAL

KNOWLEDGE FOR IMAGERY ANALYSIS" (U)

6. AUTHOR(S)
Professor David McKeown

5. FUNDING NUMBERS

62301E
2304/A7

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie-Mellon University

Computer Science Division
5000 Forbes Ave.

8. PERFORMING ORGANIZATION
REPORT NUMBER

JUN 171992 g

Pittsburgh, PA 15213-3890 OSRIR- 12
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
AFOSR/NM
Bldg 410
Bolling AFB DC 20332-6448 AFOSR-89-0199
11. SUPPLEMENTARY NOTES Sy g -
ELECTE &

Y=Y S Sy E Y7
12a. DISTRIBUTION / AVAILABILITY STATEMENT

A

Approved for public release;
Distribution unlimjited

4. DISTRIBUTION CODE

UL

13. *ABSTRACT (Maximum 200 words)

large-scale knowledge-based
imagery.
airports and surburban house scenes.
addressed issues in knowledge acquisition,

production systems.

In December 1988, researchers at the Digital Mapping Laboratory,
School of Computer Science at Carnegie-Mellon University began work on
a 30 month contract to explore the acquisition and utilization of
spatial and functional knowledge for imagery analysis.
course of this grant, they have built on previous rese
systems for the interpreta
This previous work has focused on the automated analysis of
Under this grant they have also
analysis and evaluation of

system performance, and task-level parallelism for large-scale

Over the

arch in
tion of aerial

14. SUBJECT TERMS

15. NUMBER OF PAGES
40

16. PRICE CODE

17. SECURITY CLASSIFICATION

18. SECURITY CLASSIFICATION

19. SECURITY CLASSIFICATION

20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NS, 732077 .280-5500 Standard Form 298 (Rev 2-89)

Pres:npAg Dy 4NS S10 736.°B
298 102

- Computer Science

The Acquisition and Utilization of
Spatial and Functional Knowledge for
Imagery Analysis

e

[~;-—)

The Acquisition and Utilization of
Spatial and Functional Knowledge for
Imagery Analysis

Final Project Report
AFOSR-89-0199
December 1988 through November 1991

Air Force Office of Scientific Research
Building 410
Bolling AFB, D.C. 20332

Dr. Abraham Walisman, COTR
Mathematical and Information Sciences

David M. McKeown, Jr.
Principal Investigator

Digital Mapping Laboratory

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA. 15213

March 1, 1991

NTIS CRrRA&I
DTIC 1AB
Unannou:ced
Justitication

pr—

—)

Accesion For

b
d_____ﬁ_

Avatahrity COdt—:sA

: Avail 24 or
Dist Specicl

|

i

—~—

Table of Contents
1. Executive Summary
1.1. Background
1.2. Accomplishments
1.3. Publications
1.4. Researchers Supported
2. The SPAM Architecture
2.1. Background: The SPAM Architecture
2.2. Related Work
2.2.1. RULEGEN
2.3. Architectural and Engineering Changes
3. Issues in Knowledge Acquisition for SPAM
3.1. Knowledge Acquisition of Spatial and Structural Constraints
3.2. Automatic Shape Constraint Generation
3.3. Semi-Automatic Structural Constraint Generation via Functional
Ground Truth
3.4. Acquiring Relative Shape Constraints
4. Analysis and Evaluation Tools
4.1. Statistical Performance Evaluation
4.2, Interactive Performance Analysis
4.3. Verification of the SPAM System
S. Experiments and Results
5.1. Improving Shape and Spatial Constraints
5.2. Functional Groupings
5.2.1. Focusing Functional-Areas
5.2.2. Ambiguous Interpretations
5.2.3. Relative Shape Constraints
5.3. Results for Model Generation
5.3.1. Tiling
5.3.2. Maximal Cliques
5.3.3. Heuristic Search
6. Task-Level Parallelism
6.1. Diagnostic Timing Results
6.2. Decomposing the LCC Phase
6.3. Results from Using Task-Level Parallelism
6.4. Latest Work with Task-Level Parallelism
6.4.1. Non-linear Speed-ups
6.4.2. Result Merging
6.4.3. Network-Shared Memory System
7. Open Issues
8. Conclusions
9. Acknowledgements
10. Bibliography

T U IO S 92-15501
92 6 1n Ay i T

AFOSR-89-0199 FINAL REPORT

etk junk foeed
WK =D I NE WE =

DO DD bt et e
Ni-Nd\l\l\lA

1. Executive Summary

In December 1988, researchers at the Digital Mapping Laboratory, School of Computer Science
at Carnegie Mellon University began work on a 30 month contract to explore the acquisition and
utilization of spatial and functional knowledge for imagery analysis as supported under AFOSR
Contract AFOSR-89-0199! . Over the course of this contract, we have built on previous
research in large-scale knowledge-based systems for the interpretation of aerial imagery. This
previous work has focused on the automated analysis of airports and suburban house scenes.
Under this contract, we have addressed issues in knowledge acquisition, analysis and evaluation
of system performance, and task-level parallelism for large-scale production systems.

1.1. Background

The initial research that resulted in the SPAM scene interpretation system was performed between
1984-1986 under funding from the Defense Advanced Research Projects Agency (DARPA) as a
part of their program in Image Understanding. It focused on the labeling and recognition of
various component structures in aerial imagery containing large-scale commercial and military
airports. The goal was to produce a high-level description of scene content using spatial and
structural constraints that could be expressed in a rule-based system. At the start of this AFOSR
research contract, we had just completed a major reimplementation of the SPAM system, resulting
in our ability to use SPAM to interpret suburban housing scenes in addition to airports. This
restructuring also enabled us to perform modifications of the SPAM knowledge base using high
level descriptions based upon a schema representation language. At this time, the SPAM system
included:

e The SPAM rule-based interpretation architecture;

e The RULEGEN compiler and the attribute/value knowledge representation;

e Methods for producing ground truth data, and ground truth databases for each of the
6 airports and 6 suburban housing scenes;

e The SPATS performance analysis tool;

e Several basic knowledge-acquisition tools, including a rule editor and two constraint
checking programs (RTFCHK and LCCCHK), which provide the user with graphical
feedback about how well a particular first (RTF) or second (LCC) phase constraint
performed on ground truth data.

The combination of the rule editor and constraint checking programs proved useful in refining
our existing knowledge base, though it made sense to improve the user’s ability to
simultaneously work with all three tools. This, coupled with the need to easily get at all levels of
SPAM’s results, inspired the interactive browsing and performance analysis tool SPAMEVALUATE.
This tool allows the user to graphically display ground truth data, SPAM interpretations and
consistency information, as well as permitting the user to invoke constraints on selected features.
Shortly thereafter, a tool to aid in the analysis and improvement of knowledge in the functional-
area phase was also added to our suite of knowledge acquisition tools.

Under this AFOSR contract we turned our research focus to the investigation of automatic
methods for knowledge acquisition. In our proposal we observed that automated techniques
were required and possible for (at least) two reasons:

This research was sponsored by the Air Force Office of Scientific Research under Contract AFOSR-89-0199.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Air Force Office of Scientific Research, or of
the United States Government.

AFOSR-89-0199 FINAL REPORT 1

¢ The user must spend a large amount of time examining and testing examples before
they can be confident about the addition/modification to the knowledge base. In
some cases, this process seemed easy to automate.

e We have available to us our ground truth database, which consists of complete
segmentations and annotations for 6 different airports. These are, essentially,
"ideal" examples for a learning or knowledge acquisition program.

During the first year of this research contract three preliminary knowledge acquisition tools,
RTFANALYZE, LCCANALYZE, and FAANALYZE, were developed to examine the ground truth data
and construct rules based on simple statistical measures. The results were mixed, and several
problems surfaced, though many of these problems are promising areas for future work.
However preliminary, these efforts improved the scene interpretation results generated by SPAM.
They also identified the need for the addition of domain independent knowledge to the
functional-area phase so that ambiguous interpretations could be resolved.

As we added more knowledge to the system, the end-to-end running time increased. It became
apparent that a moderate increase in the size of SPAM’s knowledge base would result in a
significant increase in the running time; so much so that it would impair our ability to do
research. Typical SPAM runs took between 10 to 100 hours on a VAX 11/780. It also seemed
clear, from the results of performance analysis, that more knowledge would be necessary to
improve SPAM’s interpretation results. In order to address the need for more processing
efficiency, during the second year we began joint research with members of the Production
System Machine group at CMU to explore the utility of task-level parallelism in the context of
SPAM. This work produced to several interesting results, including a new SPAM system built on
CParaOPSS$5, a C-based implementation of OPSS, and extensive experience using shared memory
multi-processors to achieve near linear speedups.

During the final year we were able to capitalize on our ability to perform larger scale
experiments using the CParaOPS5 environment and extend our research on task-level parallelism
to including multiple multi-processors communicating using a network shared-memory
mechanism. This work also included basic research in model generation and the refinement of
our object shape constraints to include relative measurements. In the remainder of this section
we describe these accomplishments in more detail.

1.2. Accomplishments
A summary of the research results presented in this report include:

¢ SPAM was converted from a Lisp-based OPSS system to CParaOPS5, a new, C-based
version of OPS5 created by the Production System Machine group at CMU. In
addition to simplifying the overall system design, this change resulted in a 10-fold
improvement in execution times (see Section 2.3).

¢ Our experiences using the new, C-based OPS5 with a large production system such
as SPAM resulted in several improvements to the CParaOPS5 system. For SPAM,
overall memory usage was reduced to 1/3 of the original CParaOPS5 system (with
more significant improvements to pieces of the system). An additional direct benefit
to our research was that several large datasets that previously caused SPAM to grow
too large are now able to be run (see Section 2.3).

e Several new tools were created for automatic and semi-automatic knowledge
acquisition for specific phases of SPAM’s processing. These tools were used to

AFOSR-89-0199 FINAL REPORT 2

augment the first and second phases of SPAM’s airport knowledge base (see Sections
3.1,3.2,3.3, and 3.4).

eWe created a new tool for interactive performance evaluation, called
SPAMEVALUATE, which allows the user to interactively browse through the resuits
of a SPAM run (see Section 4.2). Other diagnostic tools were created and/or
improved (see Sections 4.1 and 4.3).

e We completed further development of the SPAM image interpretation architecture.
Additional domain independent knowledge was added to the third phase of SPAM
(functional-area) so that it could more effectively resclve ambiguous (multiple)
hypotheses (see Section 5.2.2).

® We learned that limiting the focus of attention within a collection of related features
(in our case, within a functional-area) can serve to improve the effectiveness of
constraints between those features (see Section 5.2).

* We explored the use of relative shape constraints as a new type of knowledge for
improving the quality of SPAM’s interpretation (see Sections 5.2.3 and 3.4).

¢ We experimented with three new algorithms for model generation within SPAM (see
Section 5.3). The final method, a heuristic search using a domain independent
objective function, is currently generating the most correct final airport models (see
Section 5.3.3).

¢ We studied the effectiveness of task-level parallelism on a large production system
program (SPAM), achieving near linear speed-ups on a shared-memory
multiprocessor (see Section 6). We also studied the use of network-shared memory
to enable the utilization of two or more networked multiprocessors by parallel
applications.

1.3. Publications

The following conference and journal articles, describe research results that were produced under
the support of this research contract. In addition a video tape was produced and shown at the
DARPA Image Understanding Workshop, held in Pittsburgh, PA. in September, 1990.

1. Harvey, W., Kalp, D., Tambe, M., McKeown, D. and Newell, A. (1991).
"The Effectiveness of Task-Level Parallelism for Production Systems" in Journal
of Parallel and Distributed Computing, Volume 13, Number 4, December 1991. pp
395-411.

2. Harvey, W., Diamond, M., and McKeown, D. (1990).
"The Acquisition and Utilization of Spatial and Functional Knowledge for Image
Interpretation”, video tape (VHS), 16 minutes and 30 seconds.

3. Harvey, W., Kalp, D., Tambe, M., McKeown, D., and Newell, A. (1990).
"The Effectiveness of Task-Level Parallelism for High-Level Vision", Second
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), Seattle, WA. March 14-16, 1990. pp 156-167.

4. Harvey, W., Kalp, D., Tambe, M., McKeown, D. and Newell, A. (1989).

AFOSR-89-0199 FINAL REPORT 3

"Measuring the Effectiveness of Task-Level Parallelism for High-Level Vision" in
Proceedings of the DARPA Image Understanding Workshop, May 1989. pp
916-933. Also available as CMU Computer Science Technical Report CMU-
CS-89-125.

5. D. M. McKeown, Jr., Harvey, W.A., and Wixson, L. (1989).
"Automating Knowledge Acquisition For Aerial Image Interpretation” in Computer
Vision, Graphics and Image Processing, Number 46, pp 37-81 (1989). Reprinted
in Selected Papers on Automatic Object Recognition, Hatem Nasr, Editor. SPIE
Milestone Series MS 41, pp. 578-614. (19%1)

1.4. Researchers Supported
The following faculty, staff, and graduate students were fully or partially supported under
research contract AFOSR-89-0199:

David McKeown is a Senior Research Computer Scientist in the School of Computer Science at
Camnegie Mellon University and has been a member of the research faculty since 1986. He
received a B.S. degree in Physics and an M.S. degree in Computer Science from Union College,
Schenectady, N.Y. Prior to joining the faculty he was a researcher at Carnegie Mellon from
1975, a Research Associate at George Washington University and a member of the Technical
Staff at NASA Goddard Space Flight Center, Greenbelt Maryland (1974-1975), and an Instructor
in Computer Science and Electrical Engineering at Union College (1972-1974). His research
interests in computer science are in the areas of image understanding for remote sensing and
cartography, digital mapping and image/map database systems, computer graphics, and artificial
intelligence. He is the author of over 35 papers and technical reports and is an active consultant
for government and industry in these areas. He is a member of ACM, IEEE, AAAI, American
Society for Photogrammetry and Remote Sensing, and Sigma Xi.

Wilson Harvey is a Senior Research Programmer in the School of Computer Science at
Camegie Mellon University. He received a B.S. in Physics and Mathematics from Camegie
Mellon University in 1986. Mr. Harvey has been with the School of Computer Science for more
than six years, working primarily on the development of knowledge-based computer vision
systems and the representation of spatial knowledge for scene analysis. His research interests
include knowledge representation and image understanding.

Milind Tambe is a Research Associate in the School of Computer Science at Carnegie Mellon
University. He graduated from Birla Institute of Technology and Science, Pilani, India in 1986
with an M.Sc.(Tech.) in computer science. He completed his PhD in May, 1991 from the School
of Computer Science at Carnegie Mellon University. His interests are in the areas of integrated
Al architectures and efficiency of Al programs. He is a member of AAAL

Dirk Kalp is a Senior Research Programmer in the School of Computer Science at Carnegie
Mellon University. He graduated from Carnegie Mellon University in 1973 with a B.S. degree
in Mathematics and from the University of Pittsburgh in 1981 with an M.S. degree in Computer
Science. On the research staff at Carnegie Mellon since 1985, he has worked primarily in the
area of parallel production sysjems. In addition to parallel architectures his research interests
include multiprocessor operating systems, virtual memory systems, and the development of tools
for fitting symbolic parameter cognitive models. .

AFOSR-89-0199 FINAL REPORT ' 4

Matthew T. Diamond is currently a Programmer/Analyst with Shared Medical Systems in
Malvem, PA. Formerly, Mr. Diamond was a Research Programmer for the School of Computer
Science at Carnegie Meliun University. He received a B.S. degree in Mathematics (Computer
Science track) from Carnegie Mellon University in May 1989. His research interests in
computer science are in the areas of image understanding for aerial photo-interpretation,
knowledge acquisition, and computer graphics. Mr. Diamond is a member of ACM.

Anurag Acharya obtained his B.Tech (Computer Sc and Engg.) in 1987 from IIT Kharagpur,
India. He is currently a doctoral candidate at the School of Computer Science, Carnegie Mellon
University. His research interests are production systems, programming languages and parallel
processing.

In the body of this final report we provide a detailed description our work with the SPAM image
interpretation system from December 1988 through November 1991 as supported under contract
AFOSR-89-0199. Section 2 provides a background discussion of the overall rule-based image
interpretation system. In Section 2.3 we discuss changes to the underlying SPAM architecture
necessary to support knowledge acquisition and performance evaluation. We relate these
revisions and additions to our knowledge acquisition and analysis tools in Sections 3 and 4,
respectively. Experimental results from each phase of processing in SPAM are presented and
discussed in Section 5, while Section 6 contains a discussion of our work with task-level
parallelism for high-level computer vision systems. Finally, we describe our current work and
present our ideas for future research (Section 7). We believe that progress has been steady and
that the work in knowledge acquisition and system analysis has greatly improved our
understanding of fundamental research issues in knowledge-based computer vision.

AFOSR-89-0199 FINAL REPORT S

2. The SPAM Architecture

SPAM is a production system architecture for the interpretation of aerial imagery with
applications to automated cartography and digital mapping [1, 2]. It tests the hypothesis that the
interpretation of aerial imagery requires substantial knowledge about the scene under
consideration. Knowledge about the type of scene, whether airport, suburban housing
development, or urban city, aids in low-level and intermediate level image analysis, and will
drive high-level interpretation by constraining search for plausible consistent scene models.
SPAM has been applied in two task areas: airport and suburban house scene analysis. In this
section we describe the SPAM architecture, then briefly discuss related work in knowledge
acquisition and knowledge-based vision.

2.1. Background: The SPAM Architecture

As with many computer vision systems, SPAM attempts to interpret the 2-dimensional image of a
3-dimensional scene. A typical input image is shown in Figure 1. The particular goal of the
SPAM system is to interpret an image segmentation, composed of image regions, as a collection
of real-world objects. For example, the output for the image in Figure 1 would be a model of the
airport scene, describing where the runway, taxiways, terminal-building(s), etc., are individually
located. SPAM uses four basic types of scene interpretation primitives: regions, fragments,
functional-areas, and models. SPAM performs scene interpretation by transforming image
regions into scene fragment interpretations. It then aggregates these fragments into consistent
and compatible collections called functional-areas. Finally, it selects sets of functional-areas to
form models of the scene.

As shown in Figure 2, each interpretation phase is executed in the order given. SPAM drives
from a local, low-level set of interpretations to a more global, high-level, scene interpretation.
There is a set of hard-wired productions for each phase that control the order of rule executions,
the forking of processes, and other domain-independent tasks. However, this "bottom-up”
organization does not preclude interactions between phases. For example, prediction of a
fragment interpretation in functional-area (FA) phase will automatically cause SPAM to reenter
local-consistency check (LCC) phase for that fragment. Other forms of top-down activity include
stereo verification to disambiguate conflicting hypotheses in model-generation (MODEL) phase
and to perform linear alignment in region-to-fragment (RTF) phase.

The first phase of SPAM is called region-to-fragment (RTF). This is a traditional heuristic
classification process, using knowledge about the classes of features that occur in the scene to
map a segmentation to a set of interpretations. Local properties of the segmentation, such as
shape, texture, or height, are used to decide on which interpretations to generate. Examples of
the type of knowledge used in region-to-fragment would be runways are typically 50 to 80
meters wide, or houses are 8 to 10 meters high.

The second phase of SPAM is called local-consistency check (LCC). This phase performs a
modified constraint satisfaction between the interpretations generated in region-to-fragment.
The knowledge in this phase consists of the constraints between the different classes of objects.
An example constraint would be runways have perpendicular taxiways. There are many such
constraints in the system, with each constraint providing weak support to the participating
hypotheses. Thus, it is not the action of a single constraint, but the collective action of several
constraints which causes two interpretations to be found consistent with one another.

The functional-area (FA) phase groups together those interpretations that support one another,
where support is computed from the results of the previous phase. A functional-area is defined

AFOSR-89-0199 FINAL REPORT 6

Phase 4 Model G%neration
an
(MODEL) Evaluation
N\
P(I}:aﬁ 3 Functional Area
IZ{‘_%:SE)Z Local Consistency

N 1\

Phase 1
(RTH) .
Region-to-Fragment
/
Segmentation Region4
Figure 1: Aerial image of San Figure 2: Interpretation phases in SPAM.

Francisco Airport.

as a group of interpretations that are similar in function and are in close physical proximity to
one another. For instance, a terminal functional-area is defined to contain only terminal-
building, parking-lot, road, and parking-apron interpretations. It is physically represented by the
convex hull of the features in the functional-area.

Finally, the model-generation (MODEL) phase uses the functional-areas and combines them based
on a number of heuristics, including number of conflicts, number of supported interpretations,
and area of coverage. Conflicts are identified and resolved, either using support within the
context of the model, or by invoking some process which would provide additional knowledge.
For instance, if in the context of a model a region of the image was interpreted as both a taxiway
and a hangar-building, a stereo process could be invoked to help resolve the conflict based on the
region’s height estimate. Multiple models are commonly generated and these models can be
used as contexts for further processing.

2.2. Related Work

There has been a large body of work in traditional knowledge-based systems to support
knowledge acquisition and validation [3]. Typical issues include the validation of knowledge-
based systems, checking for completeness and consistency in knowledge bases, and system
performance evaluation. The application areas are broad, spanning medical diagnosis, design,
process control, and configuration analysis. However, little work in this area has been focused
within the context of computer vision tasks. One explanation is that there are few end-to-end
knowledge-based systems for computer vision in the literature. A corollary is that those
knowledge-based systems that have been built are "one-person" systems that do not survive
much past the thesis defense. Some of the earliest "high-level” vision systems applied to aerial
image analysis include Matsuyama’s system [4], the Sigma system [5], and SPAM [1]. More
recently, researchers have explored the use of generic knowledge [6] and investigated the
formalization of knowledge to support high-level vision [7].

AFOSR-89-0199 FINAL REPORT 7

Our previous work in this area [8] focused on the use of compilation tools to translate a high-
level schema based constraint representation into OPS5 productions. We also developed static
analysis tools to aid in the display and debugging of the model descriptions generated by SPAM.
As a result of the long term use of this system, our research focus has shifted toward issues in
automating portions of the knowledge acquisition process and in the development of tools to aid
in the diagnostic analysis of finer levels of system behavior. After a description of some of our
previous work, we will discuss our recent work in these areas.

2.2.1. RULEGEN

The SPAM architecture was originally hand-coded in OPS5 for airport scene interpretation.
However, hand-coding such a system for several different scene domains, not to mention
modifying and maintaining existing systems, is a formidable task. Breaking the system into
domain-independent and domain-dependent parts was an important research goal. RULEGEN is a
knowledge compiler that takes as input an intermediate knowledge representation which is
schema based and automatically generates OPS5 productions. Domain independent OPSS
productions control the execution of the generated rules.

@BEGIN taxiway
’CLASS’ = "taxiway’
"REGION-DEPENDENCES’ =

"FRAG-DEPENDENCES’ ="’

*SHAPE-CONSTRAINT’ = "curvature && 0.000000 <= value <= (.250628’
"SHAPE-CONSTRAINT® = ’area && 0.000000 <= value <= 62394.166614’
*SHAPE-CONSTRAINT’ = ’perimeter && 0.000000 <= value <= 3310.868967

*fractional-fill && 0.033127 <= value <= (0.686500’
*ellipse-length && 50.692725 <= value <= 1253.353940°
*ellipse-width & & 13.489274 <= value <= 117.718124°
*ellipse-linearity && 0.000000 <= value <= 34.161718’
‘compactness && 0.000671 <= value <= 0.046449’
*orientation && 0.000000 <= value <= 3.671971°
’mbr-length && 0.000000 <= value <= 1458.611861"
'mbr-width && 0.000000 <= value <= 533.859851°
'mbr-linearity && 0.000000 <= value <= 52.576719’

*SHAPE-CONSTRAINT

'SHAPE-CONSTRAINT’
’SHAPE-CONSTRAINT’

'SHAPE-CONSTRAINT

1V 1 T Y | I L 1

*SHAPE-CONSTRAINT
@END taxiway

Figure 3: An example schema from the first phase of SPAM.

An example of our knowledge representation format for the first phase of SPAM is shown in
Figure 3. Knowledge about the local properties of the segmentation are represented in these
schema. This schema defines taxiway objects to be 50 to 1200 meters in length, 13 to 117
meters wide, et cetera. The schema information is automatically compiled into the set of OPSS
productions shown in Figure 4. RULEGEN produces SPAM control productions to initialize the
ruleset, and one production for each of the attributes to be tested. Domain independent rules take
the results from these production firings and evaluate whether or not a runway interpretation
should be generated for this segmentation.

For the other phases of SPAM, a similar compilation process occurs, though the schema attributes
must change. In the second phase, for example, constraints between interpretation classes must
be represented. Schema files for the second phase of SPAM encode the participating hypotheses,
bounds for'the geometric tests, and a confidence value. Each set of attribute/value pairs
generates eight or more OPSS productions to do initialization, clean-up, iteration, low-level
computations, and result evaluation.

This separation of the domain-dependent portion of the system from the domain-independent

AFOSR-89-0199 FINAL REPORT) 8

» oo abraboake ok e 2 o e e o ab ol o e e 3 ofe e o o e o LEE 2] ek kakokkokkokok kR kok kR Rk Rk ko Rk
»

; **** Beginning of taxiway attribute-matches ****
o o 3 2 o e 3 o 3k 3 agc 206 2 3 306 33 e bk o0t 6 o a0 2 o e o8 o e e e 2 3 e e o e e e e el 2k ek ko %%k * ek *

(p RTF--TW--initialize-TW -attributes
(rif-task Aregion <name> Adata <token>)
(region Asymbolic-name <name> Ataxiway nil)
>
(make rtf-subtask Aruleset TW--match-TW-attributes
Aregion <name> Adata <token> taxiway)
)

(p RTF--TW--match-TW-curvature
(rtf-subtask Aruleset { <ruleset> = TW--match-TW-attributes }
Aregion <name> “data {} <hyp>)
{ (nf-rule~-constants Aruleset <ruleset>
Aattribute curvature) <constants> }
(region Asymbolic-name <name> Acurvature <value>)
-->
(bind <index> (litval constants))
(call OPS_match_score <name> <hyp> <value>
(substr <constants> <index> inf))
)

(p RTF--TW--match-TW-area
(nf-subtask Aruleset { <ruleset> = TW--match-TW-attributes }
Aregion <name> Adata {} <hyp>)
{ (rtf-rule-constants Aruleset <ruleset>
Aatribute area) <constants> }
(region Asymbolic-name <name> Aarea <value>)
>
(bind <index> (litval constants))
(call OPS_match_score <name> <hyp> <value>
(substr <constants> <index> inf))
)

Figure 4: OPS5 productions generated from the schema in Figure 3.

portion impacts SPAM greatly. With over 600 productions in the current system, automatic
compilation not only makes engineering simpler, it also allows greater freedom for knowledge
acquisition. The knowledge acquisition process is not tied to OPSS, nor does it have to
understand the inner workings of the SPAM architecture.

2.3. Architectural and Engineering Changes

Several modifications have been made to the domain-independent productions that comprise the
SPAM architecture. These have been made solely in the last two phases of the system, the
functional-area and model-generation phases. In the functional-area phase, more domain-
independent productions were added to implement resolution of ambiguous interpretations
within the context of single functional-areas. The model-generation phase is currently being
modified to allow more knowledge to be used in the search for consistent functional-areas. This
work is discussed in detail in Sections 5.2 and 5.3, respectively.

In addition to the architectural changes, we have, as a result of our research into task-level

AFOSR-89-0199 FINAL REPORT 9

parallelism?, moved SPAM from a Lisp-based OPS5 to a new system called CParaOPS5. This
system, produced by the Production System Machine group here at CMU, is a full
implementation of OPSS, with the additional capability of performing the match in parallel.
CParaOPSS5 is written entirely in C, and its rule compiler generates C-code. Even without using
the parallel matching capabilities, the conversion has yielded an approximate 10-fold increase in
performance, and has allowed us to port SPAM to several different hardware architectures,
including the Encore Multimax, the DEC 3100, and the Sun SPARCstation.

Our use of CParaOPSS has not only impacted our research, but it has resulted in several
improvements in the CParaOPS5 system, as well. Some of these improvements are:

Working-memory element size
The original implementation used a static working-memory element (wme)
size of 128 attributes. The new implementation dynamically allocates wmes
whose sizes are computed from the number of declared attributes. The
relative amount of memory used for wmes in the new system is 15-25% of
what the original system used.

Conflict set A new representation allowed the size of the conflict set to shrink to 10% of
it’s original size. The algorithm was also improved, resulting in a 10%
overall speedup.

Code optimizations There were several places in the original CParaOPSS5 system where small
(but significant) optimizations could easily be implemented. These included
the pre-computing of common subexpressions, register allocation, and
moving values from global to local variables. The net performance gain was
another 10%.

Statistics on resource usage
The CParaOPS35 system is now instrumented so that a user can get end-run
statistics on every aspect of the system. Some examples are wme-memory
usage, alpha and beta memory usage, symbol-table size, et cetera.

Minor changes to the OPSS language semantics were required for these changes to be possible.
However, the entire CParaOPS5 system has been engineered so that the user can compile it for
flexibility (using the original OPS5 semantics) or efficiency (using the new semantics). For
SPAM, these changes resulted in an overall 5-10% improvement in running times, and a 66%
improvement in memory usage. More importantly, however, the changes allowed us to run
SPAM on much larger datasets which we were previously unable to run.

25ee Section 6 for details.

AFOSR-89-0199 FINAL REPORT 10

3. Issues in Knowledge Acquisition for SPAM

In our previous work in knowledge compilation SPAM was separated into domain-dependent and
independent parts to facilitate generalization, as well as to aid in our ability to maintain the
system. The system is generated from a knowledge representation that is not dependent on the
implementation language (which, in the current SPAM system, is OPSS). With the knowledge-
base decoupled from OPSS, it is easier to create and maintain the large knowledge-bases needed
to analyze complex scenes.

Phase Tool(s) Kind(s) of Difficulties Encountered
Knowledge Using this Knowledge
RTF RTFCHK, Shape Difficult to visualize using
RTFANALYZE, attribute/value representation; Large
FAANALYZE variations across scenes; Can require

many examples; Shapes of object
classes aren’t unique.

LCC LCCCHK, Local geometric |Context dependent;, Many weak
FAANALYZE constraints required.

FA FAANALYZE, Grouping Subjective functional definitions
SPAMEVALUATE somewhat ambiguous; Very

dependent on knowledge in LCC.

MODEL | SPAMEVALUATE | Global geometric, | Many knowledge sources (from
Conflict different levels of processing) are
required.

Table 1: Types of Knowledge Used in SPAM.

Tool Phase(s) Interaction Problems
Addressed
RTFCHK RTF Textual, Allows graphical evaluation of shape
Graphical | constraints.
RTFANALYZE RTF Textual Compiles shape constraints from
examples.
LCCCHK LCC Textual, Allows graphical evaluation of local
Graphical geometric constraints.
FAANALYZE RTF, LCC,FA| Graphical, |Generates shape and local geometric
Textual constraints from examples using
contexts
SPATS All Textual Provides statistical feedback on
SPAM'’s performance
SPAMEVALUATE All Graphical, |Allows interactive graphical and
Textual, textual access to all phases of SPAM
Static graphical | results.

Table 2: Summary of Tools for Knowledge Acquisition in SPAM.

AFOSR-89-0199 FINAL REPORT 11

Tables 1 and 2 summarize the types of knowledge used in SPAM, the problems encountered in
acquiring and using this knowledge, and the tools developed to address these problems. Several
tools appear to be missing (e.g., FACHK). These may be added as necessary as the development
of this line of research continues. Each of the currently implemented tools will be discussed in
detail in the following sections.

3.1. Knowledge Acquisition of Spatial and Structural Constraints

RTFCHK, a knowledge acquisition tool for the first phase of SPAM, allows the user to interactively
study and modify schemas encoding SPAM’s shape knowledge. Correctness of individual rules is
determined by comparing their results against the ground-truth interpretations of a scene. The
results are sorted by correctness and by pass/fail into four displays. Figure 5 shows a confusion
matrix generated from applying a runway rule to data from Washington National Airport. The
matrix display shows true positives in the upper left, false negatives in the upper right, false
positives in the lower left, and true negatives in the lower right. A rule containing constraints
that are too restrictive will result in many false negatives, while loose constraints will cause
many false positives. A "perfect rule” will have no false positives or negatives. Upon viewing
these results the user may edit the schema and test it again.

RTFCHK was employed to improve a set of RTF schema that had been generated automatically
from ground-truth files. The result was a set of RTF schema that exhibited improved
performance over all of our airport test scenes (see discussion in Section 5.1). It is accepted that
shape-classification alone cannot accurately classify complex scenes, but the RTF schemas
produced using this tool provide better sets of interpretations for the later phases of SPAM.

A tool very similar to RTFCHK, called LCCCHK, aids the user in the knowledge acquisition
process for the second phase of SPAM. For this phase, pairs of regions are tested against one
another for attributes like closeness and perpendicularity. LCCCHK allows single constraints to
be applied to classes of objects, and the results are compared against the ground-truth. Again,
the user is presented with a confusion matrix display from which they may interactively inspect
the results and/or make modifications to the knowledge base.

3.2. Automatic Shape Constraint Generation

One way for a user to develop new RTF schema is to allow them to measure many example
regions. As more examples are viewed, the user can confidently assign reasonable values for the
shape-attribute constraints. Given that we have generated several ground-truth datasets
containing many examples of every class, this process can be automated.

RTFANALYZE is a tool that creates new RTF schema when given one or more scenes with ground-
truth. It statistically analyzes the associated ground-truth segmentation to produce values, by
class, for the various shape attributes. Currently, the process is exhaustive in that every attribute
is computed for every class.

Given sufﬁc1cnt examples, RTFANALYZE produces schema that perform well across a range of
airports>. The automatic schema generator produces effective rules much faster than a user can

!

3Because the process is statistics based, this qualifier depends on how representative the cxamples are of the
target class. Of course, other machine lcaming techniques, such as decision trees or clustering, can be used to help
solve this problem.

AFOSR-89-0199 FINAL REPORT) 12

Figure 5: RTFCHK display after single schema has fired on ground-truth segmentation
from Washington National Airport.

interactively, but often manual adjustments will improve a rule’s performance. The combination
of automatic generation followed by manual adjustment is currently our normal mode of
operation for producing RTF schema.

3.3. Semi-Automatic Structural Constraint Generation via Functional Ground
Truth

Much of SPAM’s effort in hypothesis refinement is performed in the LCC phase. Because the

space of possible constraints is large, manual methods of knowledge acquisition are inadequate.

AFOSR-89-0199 FINAL REPORT 13

Automatic or semi-automatic methods for augmenting LCC knowledge are not only useful, but
they become necessary to ensure that the complexity of the scene to be interpreted is captured.

The combinatorics of the second phase make exhaustive observation of example scenes a very
lengthy process, as every pair of regions must be tested using every constraint across several data
sets. Furthermore, the LCC constraints would be extrapolated based on the observed
relationships between arbitrary pairs of regions. This makes little sense when regions are
unrelated; for example, a taxiway is usually perpendicular to an adjacent runway, but has no
consistent relationship to distant ranways.

In order to reduce the combinatorics and to be more precise about what context is used in the
analysis, we decided to analyze only the structural relationships between elements of each
functional-area type. This assumes that interactions between objects of different functional-areas
is weak. The schema produced in this manner make more sense because they are derived from
local relationships. Generating LCC schema automatically requires example (ground-truth)
functional-areas.

FAANALYZE is a tool for semi-automatically acquiring and analyzing ground-truth functional-
areas. It has an interactive mode that allows the user to specify a functional-area by clicking on
its constituent regions. The system only allows the user to add regions which belong to the
correct functional-area type. For example, when entering a hangar functional-area, the user may
choose only hangar buildings, roads, grassy-areas, and parking-aprons. Figure 6 is a snapshot of
the display as a user adds regions to an example hangar functional-area.

Once ground-truth functional-areas have been created, FAANALYZE pertorms a statistical
analysis, recording the observed values of the LCC constraints. Choosing which constraint types
(distance, orientation) to use is a difficult problem, and is currently performed by the user. We
are investigating the use of observed geometric distributions to decide which constraints perform
best. As discovered with the RTF phase, a manual post-processing phase helps to improve the
quality of the constraints generated automatically.

3.4. Acquiring Relative Shape Constraints

The program FAANALYZE addresses two issues. First, we wanted to generate LCC schema
automatically by observing the relationships between region-types within functional-areas, as
discussed previously. Second, we wanted to explore relative shape constraints.

We define relative shape attributes as the ratio between an attribute of functional-area seed-
region and the same attribute for an element of the functional-area. For instance, we
hypothesized that if the seed region was larger than average, then one might expect the elements
around it to be larger, as well. Several working-memory elements representing relative shape
constraints for hangar-buildings and runways are shown in Figure 7. Unlike the first phase of
SPAM, which tests the absolute shape-attributes of regions, the relative constraints take into
account the relative size of the airport or subsets of it. The numbers, therefore, are unitless.

Generating relative shape constraints and LCC schema automatically requires example
functional-areas. Once sample functional-areas have been created, FAANALYZE analyzes them,
recording the observed values of both the relative shape constraints and the LCC geometrics. The
output is in the form of working-memory elements and LCC schema. These are used to generate
a new SPAM system.

AFOSR-89-0199 FINAL REPORT 14

Bl Regione of ~“hanger-building” functional-areas EE. FA: moffetti 54 (hangar-building’

jant b

34, 2 of 5 points, new
‘moffettl 34*

No RLtributes

Mo Associstions

(o] [Erter ehie Fa]

Figure 6: FAANALYZE: Selecting regions to build an example functional-area.

(make fa-constraint “fa-context hangar-building
~from-class hangar-building “to-class road
“attribute area “‘minimum 0 “maximum 1818693

(make fa-constraint “fa-context hangar-building
~from-class hangar-building “to-class tarmac
“attribute perimater “minimum 0 “maximum 73371

(make fa-constraint “fa-context runway

~from-class runway “to-class taxiway

“attribute area “minimum 1 “maximum 157
(make fa-constraint “fa-context runway

~from-class runway “to-class taxiway

“attribute perimeter “minimum 4 “maximum 170
Figure 7: Example relative shape constraints.

The relative shape constraints can be used in the following three ways:

AFOSR-89-0199 FINAL REPORT

“average 442)

“average 728)

“average 9)

“average 16)

15

o To filter incorrect hypotheses from each functional-area;

e As a measure of confidence for entire functional-areas; if the ratios are outside the
expected ranges, then either the seed region of the functional-area is incorrect or
many constituents of the functional-area are wrong;

e To filter out unlikely hypotheses before the LCC phase fires, reducing the number of
competing hypotheses in the LCC phase.

The relative shape constraints do, in fact, filter out hypotheses from functional-areas. However,
we found that the local-consistency phase also filters many of the same hypotheses. We
investigated using the relative shape-constraints to evaluate functional-areas as a whole, but the
difference between a correct and incorrect functional-area was found to be difficult to quantify.
This leaves only the third use, for filtering out hypotheses before the LCC phase fires. Because
these constraints almost duplicate a subset of the LCC phase’s results, we could use the relative
shape-constraints without changing the final results. Since relative shape-constraints are faster
than the LCC geometrics, this should reduce SPAM’s total running time.

AFOSR-89-0199 FINAL REPORT) 16

4. Analysis and Evaluation Tools

Post-run analysis and evaluation provides important feedback about the correctness of the
knowledge-base and ways in which it can be improved. Some of our older tools, such as
SPATS (8], produce statistical summaries of the performance of the SPAM system. Static run
analysis can provide good summaries of system performance, allowing a user to easily gauge the
aggregate affects of modifying a system’s inputs. However, it can be difficult reasoning from
this analysis about the specifics of why a result came to be. For example, knowing that a certain
number of taxiways failed to pass a particular rule provides no information as to which taxiways
failed, or why. While there is currently no automatic diagnostic tool for a SPAM user to consult,
it seemed most natural to provide a graphical tool that would allow the user to interact with the
results from a SPAM run. Our experience has found SPAMEVALUATE to be an effective
diagnostic tool.

4.1. Statistical Performance Evaluation

SPATS is an older utility that generates performance statistics on SPAM runs. These statistics are
used to chart improvements in SPAM’s performance and to expose weaknesses. Recently we
made some simple (but important) improvements in the output format to make it easier to use
and understand. Some of these include condensing the generated tables, improving the statistics
by breaking them into categories, and including explanations of output directly with the
statistics.

We also rewrote the analysis code to conform with the changes we made in converting SPAM to
CParaOPS5. The code that SPATS used in accessing working-memory element dumps was slow
and memory inefficient. This seriously hindered (and sometimes prevented) the analysis of large
SPAM runs, sO we rewrote it to require less storage in memory. It also performs many times
faster than before, and with some added functionality. Other programs now use this code as
well, including SPAMEVALUATE.

4.2. Interactive Performance Analysis

SPAMEVALUATE provides an interactive medium for browsing SPAM results and evaluating
proposed modifications. It generates run statistics that augment those already generated by
SPATS. It produces exhaustive and summary output. Dumps are a human-readable reproduction
of the results of each phase; swnmaries are statistical synopses of the results. For example, the
dump of the RTF phase lists each region, along with every RTF schema it passed. The summary,
on the other hand, is a chart showing the breakdown of correct interpretations versus incorrect,
allowing the user to infer which interpretations tend to be mistaken for one another. Statistics
are available for the first 3 phases of SPAM; a sampling is shown in Figure 8.

Using the graphical mode of SPAMEVALUATE, the user can select regions by clicking with a
mouse and then display very specific information culled from the SPAM run. The user can jump
from phase to phase, observing how the results from each of the phases interact. The Figure 9
shows, in overlapping windows, the various phases of results as the user displays each in turn.
Since the results are displayed graphically, the user gets a more intuitive feel for the meaning of
the results. For example, a statistical summary might show that many taxiways are failing, but
the graphical display would show that the failing taxiways tend to be longer than average,
implying that the problem might lie in the RTF phase.

Another feature of SPAMEVALUATE is the ability to invoke schema of the first and second phases
on individual regions, similar to the functionality provided by RTFCHK and LCCCHK. Since

AFOSR-89-0199 FINAL REPORT 17

Generic Image: moffettl
Scenetype: airport
[RTF DUMP: interpretations generated by ground-truth region id)
moffettl 0: navigational-aid parking-apron parking-lot grassy-area
tarmac maintenance-building taxiway terminal-building
moffettl_1: parking-lot taxiway road terminal-building
moffettl_2: runway

[RTF STATS: class confusion matrix]
G.T. INTERFPRETATION
| SPAM INTERPRETATION ~->

v RN TW MRD ARD HWRD CB CHBR HB NB TB CT PA PL GA TH PMR NVA APJ
" 2] 0 0 o () 0 0 [0 0 0 [} 0 0 0 0 0
™ o 36 o 15 [) o 10 15 27 0 16 28 15 17) 8 0

ARD 0 1 0 2 0 0 0 [0 0 0 0 0 -] 0 0 0]
HB Q 5 0 1] 1 Q 9 7 7 [6 7 7 7 o 6 o
B 0 1 4 [[0 0 0 1 1 0 1 1 1 1 0 1 0
k4] 0 0 0 0 0 [} [0 0 0 0 0 0 [0 0 0 0
PA [0 0 [0 0] [1 1 (] 3 1] 1 2 0 1l 0
PL) 3 (] 1 [0 0 0 2 2 [} 2 3 2 2 [0 0
GA 0 1] [0 0 0 0 1 1 0 4 1 11 8 0 2 0

[Lee sﬁ;l: pairwise consistency table]
HYPOTHESIS-PAIR (t-t)c (t-t)i (t-f)c (t-£f)i (f-f)c (£-£f)1 Totalld
1%

tazivay--runwvay 92% — -—— ——— os 64
road--road 2% —— —— 12% ——— 72% 50
hangar-buildi--road 4% ———— -— 108 —— 63% 108
hangar-buildi--hangar-buildi 21% -=- —— 2% - (12 92
terminsl-buil--road oy —-— -— 10% ~——— 85% 203
parking-apron--hangar-buildi 7% ——— -— 13% —— 67% 188

[(FA DUMP: functional-area constituents by type]
FUNCAREA 77 (terminal)-- moffettl_1([TW]
road: moffettl 32*
parking-apr: moffettl 48[GA) moffettl 47([GA]
parking-lot: moffettl O([TW]
FUNCAREA 76 (road)-- moffettl 1[TW]
grassy-area: moffettl O[TW] moffettl_48* moffettl 47*

[FA STATS: comparison of generated intarpretations to ground-truth by FA type]
runway
runway-- 2 of 2 correct
taxiwvay-- 21 of 21 correct
grassy-area-- 11 of 11 correct
tammsc-~- 0 of 1 correct (1 GA)
hangar
road-— 4 of 26 correct (18 T™W) (4 PL)
hangar-building-~ 28 of 97 correct (68 TW) (1 ™)
parking-apron-- 8 of 49 correct (25 T™W) (8 HB) (7 PL) (1 GA}
tarmac-~ 0 of 21 correct (3 MB) (18 GA)

Figure 8: Selected statistics generated by SPAMEVALUATE.

tracing through the results often suggests possible deficiencies in the current ruleset, the user can
test such conclusions by invoking individual schema on any chosen region. The rule fires in a
verbose mode, showing which constraints passed or failed, and by how much, as seen in Figure
10.

In practice, SPAMEVALUATE has been invaluable in our evaluation of the SPAM system.
Sometimes a problem is solved by adjusting a constraint, or by adding a new schema to express a
new piece of knowledge. SPAMEVALUATE also facilitates access to information necessary to
study new methods of processing in the (more complex) functional-area and model phases. It is
useful to be able to reason backwards from an interpretation result containing an error to the
specific piece of knowledge causing that error. For instance, we recently changed the FA phase
to remove competing hypotheses from within a functional-area, resulting in unique labels for the
constituent objects (see Section 5.2.2). SPAMEVALUATE aided the algorithm development by
permitting us to interactively trace back relationships from sets of functional-areas to LCC
constraints between specific pairs of objects.

AFOSR-89-0199 FINAL REPORT 18

REGIONS OF GT-TYPE grassy-arca NN =))

not fott1 48

‘g.t. ‘= ‘gresey-eres’
’vv-\'. = "large-blad’
‘fragrant’ 3 ‘linear’
‘fragaent’ » taxivay’
‘frapuwnt,’ = ‘oreswy-ares’
‘fragrant’ = ‘tarwac’

fsanct st1one

W

rmm‘s CONSISTENT WITH "moFfettl 2 (rumiey) S (1]

A 448, 7 of 32 polrts, neme ‘moffettl 48°
.?.'_. e .
‘frogment” = "taxivey’
“ram=3ink” = ‘17
° rule’ = “TieaTis-ere-close-to-fis’
fragrent’ = ‘gresmy-ares’
- “ram-link” = 17
b, 2 pule’ = *GRSGRS- fis”
. - “fragaent’ = "tarwac’

Trarlisk’

ruls”
"THSeis-are—ar tentad-perallel-to-Ris’
b Aweociations

W W eo

A 15 rurssey FA: seed “moffetel 2" —EP
SN 413, 8 of 32 points, nmw ‘woffettl 48°
\ . 1on’ onent”

fafunct: = "ol
f\‘

“spamr-intery’ = ‘tarmsc

" SpaInters’ = ‘srasey-eres’
“sparintery’ = ‘taxivay’
‘gt-irterp’ = ‘orevey-area’
o fAesociations

S

Figure 9: Various evaluation methods in SPAMEVALUATE.

AFOSR-89-0199 FINAL REPORT 19

::} N L SR

[commands [options || ghase keep-ps-fies [|

RTF_REG_AGAINST_RULE for region “moffettl_48° and rule ’‘grassy-area’
curvature (Hin: 0,0000, Max: 0,1330): 0,0540

area (Nin: 0.0000, Max:s 228774.9700): €1407,9333
perimeter (Min; 0,0000, Max: 2343,5700): 1543,0383
fractional-fill (Min: 0,2540, Max: 1.0000): 0,3269
compactness (Hin: 0,0200, Hax: 0,0740): 0,0258
orientation (Min: 0,0000, Hax: 3.7290): 2.0438
ellipse-length (Hing 0,0000, Hax: 832,0300): 534,2343
ellipse-vidth (Hin: 0.0000, Max: 343,7000): 126.4943
ellipss-linsarity (Min: 0,0000, Max: 5,3000): 4,2234
sbr—length (Hin: 0,0000, Max: 911,3100): 568.6322
mbr—width (Min: 0,0000, Max: 440,4200): 325,5202
mbr—1linearity (Hin: 0,0000, Max: 8.0000): 6.5806
Region PASSED,

| EDIT rule SHAPE- CONSTRAINTS> |

— e

Firing GRs—border—Ris
Firing bstween moffettl_2 and moffetti_48
precond— distance,least: [0.0000,100,0000] 0.4503 true.
¢ distance, least:
cons{stent: (0,0000,30.,0000] 0,4503 true
inconsistent: (75,0000,1000000000,0000) 0,4503 false
CONCLUSION: consistent

Firing Rils-are-parallel-to-CAs
Firing between moffettl 2 and moffettl_48
precond=- distance,least: (0,0000,100,0000] 0,4503 true,
¢ orientation, parailel:
consistent: (0,0000,0,5000] 0,0842 true
inconsistent: (0,8000,1000000000,0000) 0,0842 false
CONCLUSION: consistent

| EDIT rule SHAPE- CONSTRAINTS> |

Figure 10: SPAMEVALUATE: Invoking RTF and LCC schema.

AFOSR-89-0199 FINAL REPORT

4.3. Verification of the SPAM System

One other tool deserves mention as a simple diagnostic tool. SPAMANALOG aids in the detection
of problems with SPAM after it has been compiled into a production system. Since SPAM is a
very large and complex production system, as we add new types of knowledge (and thus new
types of productions), it is easy to introduce bugs. It is not feasible to trace every production
firing of a SPAM run to check for errors, since even a small run can contain as many as 80,000
production firings, while larger runs can number 500,000 or more productions fired [9].

To find mechanical problems in the system, SPAMANALOG examines the logfile produced by
SPAM and tallies the productions fired, listed by phase and by individual productions. Also
extracted are timing information and any error messages that SPAM may have produced. The
result is a simple summary, such as the one in Figure 11, that we use to spot anomalies in the
production firings. In addition, even though it is often impossible to directly compare logfiles of
different runs (because of their size), it is easy to compare two SPAMANALOG summaries of
them. We exploit this property to verify that new control and domain knowledge is not
adversely affecting the mechanics of the run.

SUMMARY OF PRODUCTIONS FIRED

Production type # fired

RTF 14431

ce 56864

TA 6820

NG 5133

SPAM H

othex 2
Production name # fired
RTF**GENERAL*check-match*analyze* 952
RIT**CENERAL*check-match*make-fragment* 253
RIF**CENERAL*check-match*aissing £id threshold* 15
RIFP**GERNERAL*check-mat ch*under-threshold* 699
RIP--TW~--initialize-TW-attributes 32
RTP--TH--mat ch~TW-area 32
RTr--TW--mat ch-TW-compactness 32
RTP~-TW--match~TW-curvature 32

RTF--TW--match-TW-ellipse-length 32

tédse WARNING : The following productions never fired: #*#w#«s
RIF* *GENERAL* subt ask-exit*
RIFSUPP**curved-alig t¥vp
RTFSUPP**curved-alig it * o
RIFSUPP**fork-process-1

{2 L 24

| o

Timing Information

Init: User_Time: 0.4000 sec, Sys Time: 1.0900 sec, Tot Time: 1.4900 sec
Match: User_Time: 584.8800 sec, Sys_Time: 10.7000 sec, Tot_Time: 595.5800 sec
RHS: User_Time: 2599.6000 sec, Sys Time: 96.3600 sec, Tot_Time: 2695.9600 sec
load: User Time: 6.0300 sec, Sys Time: 0.2700 seq, Tot_Time: 6.3000 sec

Productions Fired: 83255
RHS Actions Performed: 121545

Working Memory Changes: 87199
Shared Memory Usage: 46080000 bytes alloc’d, 7298044 bytes used, 15.84% usage.

Figure 11: Example of SPAMANALOG output.

AFOSR-89-0199 FINAL REPORT 21

5. Experiments and Results

One tangible result of an image interpretation system should be the generation of a labeled set of
segmentations. For SPAM, this labeled set includes the context in which the interpretations were
decided upon (the model(s) and their constituent functional-areas), as well as the set of
interpretations and related consistency information. However, a task as difficult and complex as
aerial image interpretation allows many opportunities to contribute to the body of research
knowledge, in addition to simply generating a final result. Evaluation of the effectiveness of
different types of knowledge is an interesting as well as important element of our research goals.
In this section, we present some experimental results from each of the phases of processing in
SPAM. We discuss these results and evaluute the effects of the knowledge acquisition tools
presentec in the previous section.

5.1. Improving Shape and Spatial Constraints

As seen in Section 3, many of the tools developed for use with SPAM were created with the
specific purpose of improving the results emerging from a single processing phase. For
example, the program RTFANALYZE allowed us to automatically generate sets of RTF schemas
from statistics produced from our airport ground-truth database. Because the RTF phase deals
only with local properties of each segmentation, a brute-force approach is tractable. These
automatically generated schema were found to improve the classification of certain object
classes (e.g., taxiways) when compared with the hand-generated schema. Figure 3 shows these
differences. For example, the number of true positives for taxiways increased from 11 to 28.
However, the number of false positives also increased from 11 to 46. This trend is true, in
general, across all object classes. The issue is that most of the false positives will not be found to
be consistent with other hypotheses during SPAM’s LCC phase. Therefore, it is more important
for a larger number of true positives to proceed past RTF.

Class # Ground | Auto True | Auto False | Auto False | Auto True { Hand True | Hand False | Hand False { Hand True

Truth Positives | Negatives | Positives | Negatives Positives Negatives Positives Negatives
runway 4 3 1 0 163 0 4 0 163
axiway 39 28 11 46 82 11 28 11 117
road 2 1 1 20 145 1] 2 3 162
terminal-building | 9 4 5 54 104 2 7 23 135
hangar-building 17 11 6 56 94 5 12 12 138
parking-apron 0 0 0 55 112 0 0 59 108
parking-lot 0 0 0 74 93 0 0 98 69
grassy-area 45 43 2 57 65 35 10 14 108
tarmac 6 3 3 82 79 1 5 36 125

Table 3: Comparison of RTF confusion matrices for hand versus auto generation for San
Francisco.

From evaluating the results of running SPAM on several different airport scenes, it became clear
that knowledge in LCC was incomplete. This was most evident when examining functional-area
results, as it was easy to see that certain object classes were incorrectly supporting (or not
supporting) one another. For the LCC phase, quantitative result evaluation is more complicated
because constraints are not universally true. For example, though distance constraints exist
between hangar-buildings and roads (as classes), there may be no such relationship between a

AFOSR-89-0199 FINAL REPORT 22

specific hangar-building/road pair. A ground-truth database of constraints to permit such an
evaluation would be tedious and time-consuming to generate (though not impossible). In lieu of
generating such a database, we designed several experiments to assist us in evaluating the
effectiveness of the LCC rules. Two of these experiments were:

e Replacing the output from RTF with a set of perfect interpretations;
¢ Supplementing the output from RTF with a set of perfect interpretations.

The set of perfect interpretations can be easily generated from the ground-truth. We can
qualitatively evaluate the results of these experiments using our knowledge acquisition tools
while also refining the existing knowledge base. We can then quantitatively evaluate the results
of rerunning the SPAM system.

The first experiment helped to detect problems with lack of support between correct hypotheses
(false negatives). Missing support would indicate either a lack of constraints or incorrect (too
narrow) bounds on the existing constraints. SPAMEVALUATE and LCCCHK were used to evaluate
proposed constraints as well as to locate and fix problems with existing constraint bounds.

The second experiment aided in identifying incorrect hypothesis support (false positives). As
stated previously, SPAM assumes that consistency between two interpretations is determined by
the action of multiple constraints. Therefore, it is expected that there will be many constraints
falsely satisfied, and that they will be distributed randomly among the available hypothesis
classes. However, if a rule has a very permissive bound, then many false positives occur, and the
constraint poorly discriminates one class from another. Again, both SPAMEVALUATE and
LCCCHK were used to identify useless constraints and to tighten bounds on permissive
constraints.

In addition to manual modifications to the knuwicage base, we used FAANALYZE to semi-
automatically generate constraints for the LCC phase. FAANALYZE generates all possible
geometric constraints and performs only simple pruning of the results. A significant portion of
these constraints provide very little discrimination between consistent and inconsistent
hypotheses, though several mussing constraints were found. Therefore, creating LCC schema is
still a task for a knowledgeable user, but FAANALYZE is still useful as an advisory tool,
supplying the range of expected values once a geometric constraint has been selected.

5.2. Functional Groupings
Viewing the results of FA from a number of airports using SPAMEVALUATE revealed sever:!
problems, the most apparent of which were:

o Large functional-areas — The generated functional-areas covered large portions of
the scene and included many regions.

e Muitiple interpretations — Within a functional-area, a given region could have
multiple conflicting interpretations.

Discussion of and solutions to these problems are reviewed below.

5.2.1. Focusing Functional-Areas

The ideal functional-area should include only the seed (or, generating) region and those regions
consistent with the seed that surrounding it. SPAM requires small functional-areas for several
reasons. One purpose of the functional-area is to provide an object whose set of constituents are
relevant to one another, i.e., they exert some constraint on most of the other members of that set.
If a functional-area is too large then bounds on constraints between members of that functional-

AFOSR-89-0199 FINAL REPORT 23

area will tend to be less precise. Additionally, a large number of functional-area elements makes

the process of deciding ambiguous interpretations computationally more difficult (see Section
5.2.2).

Using knowledge that was collected before the creation of our knowledge acquisition tools, the
functional-areas generated by SPAM were too large, both in size and in number of elements.
Some of this was corrected as a result of using these tools to improve both RTF and LCC results.
However, enough problems remained that we felt it necessary to develop a method for focusing
the application of constraints to local regions around our current area of interest.

A natural solution to this problem was to allow preconditions in local-consistency rules in order
to force each rule to focus on smaller portions of the scene. For example, we use a maximum
distance test to prune away regions that are being considered for orientation tests. Because the
functional-area is computed from the local-consistency information, this addition reduces the
number of interpretations considered and, therefore, the size of the functional-area.

Figure 12: Functional-Area from Figure 13: New Functional Area after
Dulles International. Preconditions.

Example functional-areas, before and after addition of preconditions, are shown in Figures 12
and 13, respectively. The seed for these two functional-areas is the same (the runway region
highlighted in bold), and the interpretations that are incorrect or ambiguous are shown in grey.
The change in size is obvious, and one can see that not only is the new functional-area more
focused, but it contains no incorrect or ambiguous interpretations when compared to the ground-
truth. As expected, the preconditions are providing a context around each interpretation within
which we can apply the spatial constraints.

AFOSR-89-0199 FINAL REPORT ’ 24

5.2.2. Ambiguous Interpretations

Another problem we addressed was the resolution of ambiguous interpretations within a
functional-area. Previously, we would delay resolution of such conflicts untii MODEL phase,
making the model-generation process more complicated. Making these decisions in FA seems
more intuitive, as functional-areas emerging from this phase are, as a result, internally consistent.

The context provided by the functional-area is used to decide between two or more competing
interpretations. Again, the solution that seemed most natural was to use more complicated LCC
constraints. An example of such a constraint is tarmacs are close to and located at the ends of
taxiways. These types of constraints could be implemented as functions of the binary constraints
already used in LCC. This suggests that a function involving a count of the number of positive
and negative links could be an effective method of determining which of several hypotheses is
most supported. This function should have the property that, when evaluated over all the
supporting hypotheses, fewer multi-constraint successes should receive a higher confidence than
many single-constraint successes.

We chose a function that totaled all positive links from unambiguous hypotheses (regions with a
single interpretation in the context of the functional-area) for each ambiguous interpretation
(regions with multiple interpretations within the context of the functional-area). Those
unambiguous hypotheses supporting the conflict with more than a single satisfied constraint
receive extra weight in the confidence computation. The interpretation with the most weight
remained in the functional-area; any competing interpretations were filtered out.

Table 4 shows statistics compiled across all the filtered functional-areas generated from a single
run. The chart shows the four airport functional-area types, broken down into their respective
elements. Each element-type is followed by four columns showing, in order, the number of
correct hypotheses of that type found in functional-areas, the number incorrect, and then the
results of the filtering (number of correct/incorrect hypotheses filtered). The numbers indicate
that, in most cases, the incorrect hypotheses are being filtered out more often than correct ones.
For instance, every incorrect hypothesis of the runway functional-areas is filtered, and only two
correct hypotheses are removed. This means that the filtering algorithm and the consistency
information it uses are generally working well. A specific observation should be made with
regard to terminal-building functional-areas. From the table it can be seen that parking-aprons
within terminal-building functional-areas seem to be filtered more or less randomly. This is due
in part to there being such a small ratio of correct to incorrect terminal-building functional-area
seeds. This is the fault of the consistency information for terminal-building functional-areas, not
of the filtering algorithm.

5.2.3. Relative Shape Constraints

A less successful experiment was the development of relative shape constraints. As described in
Section 3.4, the relative shape constraints endeavor to normalize the shape-attribute values of
regions of a functional-area, using the seed of the functional-area. This allows tighter bounds on
the attributes, since they will adjust themselves to larger or smaller airports automatically. We
expected these new constraints would help in several instances. We wanted to use them to weed
hypotheses from functional-areas, or to weed internally inconsistent functional-areas entircly. In
addition, these constraints could be used to filter hypotheses before the LCC phase runs, reducing
the amount of work the LCC phase must do.

The relative shape constraints turned out to be very weak. Experiments showed that while they
were capable of some weeding, they basically duplicated a small subset of the results we were
already obtaining from the LCC phase. As for detecting incorrect functional-areas, the

AFOSR-89-0199 FINAL REPORT 25

FA Element Correct Incorrect # Correct # Incorrect
Type Type Hypotheses Hypotheses Hypotheses | Hypotheses
Filtered Filtered
runway nmway | 3 0 0 0
taxiway | 24 1 0 1
grassy-area | 20 6 2 6
tarmac | 0 19 0 19
hangar | hangar-building , 75 319 0 0
road | 79 65 3 21
parking-apron | 11 219 1 117
tarmac | 19 236 0 140
terminal terminal | 2 105 0 2
road | 102 104 10 29
parking-apron| 16 335 14 281
parking-lot | 43 541 0 61
road road | 128 47 0 0
grassy-area | 94 126] 29

Table 4: Dulles functional-area summary.

differences between correct and incorrect functional-areas were very slight, and too unreliable to
quantify. However, we did note that relative shape-constraints are much faster than computing
LCC-constraints, so running the FA phase with relative constraints before firing the LCC phase
might in fact speed the system up with very little change in the results. We plan to experiment
with this in the future.

5.3. Results for Model Generation

The final phase of SPAM must produce a consistent scene model by merging functional-areas
while resolving any ensuing conflicts. Multiple models should be generated when competing
models of the same scene are radically different in layout. Model generation is a hard problem,
conceptually and combinatorially; the strictly algorithmic approach, generating all possible scene
models, can be shown to be NP-complete (see Section 5.3.2). This section outlines three
different methods that we have used for generating final scene models from functional-areas.
These are:

1. Generating a tiling of the scene;
2. Generation of maximal cliques from a graph;
3. Using heuristic search.

We are experimenting with each of these methods, though the heuristic search method currently
shows the most promise.

5.3.1. Tiling

One of our approaches to producing a scene model involves generating a tiling of the scene in
question. Such an algorithm tries to choose those functional-areas that maximize the amount of
the scene that is covered. This would be a trivial problem if it weren’t for the fact that
functional-areas overlap, and interpretations for those regions in the areas of overlap can conflict.

AFOSR-89-0199 FINAL REPORT 26

These conflicts must either be avoided, or resolved intelligently, as they determine the overall
goodness of the generated model. Therefore, constraints are applied which allow the system to
intelligently choose which functional-areas can coexist.

The algorithm works as follows. Initially, the model is empty. A model seed (an initial
functional-area) is chosen, either automatically or by the user, and consecutive functional-areas
are added to this seed based on maximizing the number of new regions, minimizing the number
of hypothesis conflicts, and maximizing support from existing functional-areas. The process
terminates when a given percentage of the input regions have been used in the model.

This procedure efficiently generates a single model which is very dependent on the quality of the
initial seed functional-area. We believe this dependence could be lessened by creating better
functional-area constraints. Further development would emphasize embedding this algorithm in
a framework that would allow the ability to generate and rank multiple models.

5.3.2. Maximal Cliques

Another approach to model generation views each functional-area as a node in a graph, with arcs
existing based on the compatibility of two functional-areas. Compatibility can be computed by
applying constraints, such as those used in Section 5.3.1, to functional-area pairs. Once the arcs
have been computed, models can be extracted from the graph by searching for maximal cliques,
or by looking for cliques of a particular size. Algorithms for these problems exist, but their
worst-case performance is known to be exponential in the number of inputs. In this case, the
number of models generated can be exponential in the number of functional-areas. For our
experiments, only the smallest sets of functional-area results could be used to generate models
(no more than 40 or 50 functional-areas). Modifications to this method, such as adding domain
knowledge to constrain the search for cliques, or reducing the numbers of nodes in the graph by
merging functional-areas of the same type, could help make the process tractable.

5.3.3. Heuristic Search

Our most recent research in model generation uses heuristics to constrain which sets of
functional-areas can coexist in the same model. A best-first search is performed in the space of
possible functional-area groups. Conflicts between competing hypotheses from different
functional-areas are enumerated, but are currently not resolved.

The key to directing the search for models efficiently and intelligently is the set of heuristics
used. No attempt is made to rank or order the heuristics. Instead, all heuristics contribute
equally to the functional-area’s score, some in a positive manner and others negatively. The
score improves if the functional-area adds new regions and/or support to the current model, is
very compact, or covers a lot of area. The score is reduced if conflicts are added to the model.
The score is normalized according to the number of regions in the functional-area in an attempt
to allow functional-areas of varying sizes to participate equally in model-generation. Other
heuristics include the density of the entire model, and the density of the conflicts. A tight group
of conflicts is believed to be better than one with conflicts spread out all over the scene.

All the model heuristics discussed thus far are domain-independent. There are instances where
one would like to bring domain-dependent constraints to bear, such as constraints between
functional-areas, much like the LCC phase evaluates consistency between pairs of regions.
Examples of such constraints are terminal-buildings are centrally located with respect to the
runways (in fact, there are functional reasons for the control-tower or terminal-building area to
be more or less equidistant from each runway) and hangar-buildings are not centrally located.

AFOSR-89-0199 FINAL REPORT 27

Figure 14: Model of Moffett AFB. Figure 15: Functional-Areas in the Model.

Our experiments with these constraints indicate that they are not good predictors and so cannot
be used to intelligently generate and/or fix models, though they can be used to evaluate existing
models. Therefore, our current scheme generates multiple models (without using scene
dependent knowledge), then allows domain-dependent constraints to be used to rank the models
produced. Further exploration of these types of constraints is material for future work.

AFOSR-89-0199 FINAL REPORT : 28

6. Task-Level Parallelism

The production system programming model used by SPAM allows knowledge to be added easily.
However, large production systems like SPAM continue to suffer from extremely slow execution
times, which limits their utility in practical applications, as well as in research settings. Most
efforts at speeding up these systems have focused on match or knowledge-search parallelism in
production systems. Although good speed-ups have been achieved in this process, the total
speed-up available from this source is not sufficient to alleviate the problem of slow execution in
large-scale production system implementations. Such large-scale tasks can be expected to
increase as researchers develop increasingly more competent rule-based systems.

Another area of our research, done in conjunction with the Production System Machine group at
Camegie Mellon, has focused on task-level parallelism (TLP) [10, 11], which is obtained by a
high-level decomposition of the production system. We will describe some timing results from
the original, Lisp-based SPAM system, then show our problem decomposition, and finally show
the resultant performance improvements obtained using task-level parallelism running on a 16
processor Encore Multimax.

6.1. Diagnostic Timing Results

Table 5 gives statistics for the run-time and number of production firings for each interpretation
phase in SPAM for San Francisco International Airport (SF) . These statistics are representative
of those obtained from other data sets. It is interesting to note that LCC and FA phases account
for most of the overall time in a complete run. Further, within these phases, much of the rule
evaluation is performed outside of the OPS5 production system using external processes. For
example, FA spends much of its time doing evaluation outside of OPS5. RTF, on the other hand,
spends most of its time within the traditional OPSS5 evaluation model and consumes less time than
FA, even though it executes a comparable number of productions. It is also clear from this table
that the application of spatial constraints in LCC makes it by far the most expensive phase in
terms of amount of time spent, number of productions, as well as number of production firings.

SPAM Phase RTF LCC FA MODEL Total
Total CPU Time (hours) 1.5 144.5 73 0.71 154.01
Total Productions Fired 11274 185950 10447 3085 210756
Effective Productions/Second 2.08 0.357 0.397 1.20 0.380
Total Hypotheses 466 N/A 44 1 N/A

Table 5: San Francisco Airport (log #63)

During the LCC phase, knowledge of the structure or layout of the task domain (i.e. airports or
suburban housing developments) is used to provide spatial constraints for evaluating consistency
among fragment hypotheses. For example, runways intersect taxiways and terminal buildings
are adjacent to parking apron are examples of the kinds of constraints that are apphcd to the
airport scene segmentation. It is important to assemble a large collection of such consistency
knowledge because the results of these tests are used to assemble fragment hypotheses found to
be mutually consistent as contexts for further interpretation within the functional area phase.

Just from the raw statistics, it seems clear that the LCC phase should be our candidate for

applying parallelism. Another rationale for this approach is the observation that this phase has
the largest potential for growth. If a single new scene primitive is added within the RTF phase,

AFOSR-89-0199 FINAL REPORT 29

many constraints may be added in the LCC phase in order to describe the spatial relationships
(and constraints) between each of the other primitives. For these reasons, we believe that as new
knowledge is added to the existing SPAM system, the proportion of time spent in LCC phase can
only increase.

6.2. Decomposing the LCC Phase

As a result of this preliminary analysis we decided to focus our initial efforts on the parallel
implementation of the LCC phase. The LCC phase applies geometric knowledge (constraints)
from the selected domain to the set of interpretations made from the dataset. This application of
geometric knowledge can be logically decomposed into several levels, where the tasks within
each level are independent and can be performed in parallel. This is illustrated in Figure 16.

Grain of .
Computation| Icon Description
....Phase | UL FRS CompletcPhase
Boidsdivestl IR I LJ..... Fire Class Check

Level Three I I I 1 I | l Group of Ruleset Executions
Level Two |—| [I |] | | [I r I [| |—| Single Ruleset Execution
Levelone | [UICI0I0000000O0NOINONOKD0000000000 | singte Constraint Check

Figure 16: Levels of processing in SPAM LCC.

In order to choose the right level of decomposition at which to parallelize the SPAM LCC phase,
we instrumented the SPAM system to obtain measurements at each level for the number of tasks
and their run-time average, standard deviation, and coefficient of variance. The results of these
measurements for each of the San Francisco airport dataset are presented in Table 6.

Level Average Standard Coefficient | Number
time per task deviation of variance | of tasks
(sec) (sec)
Level 4 875.27 525.92 0.601 9
Level 3 65.65 29.51 0.449 120
Level 2 20.90 8.48 0.406 377
Level 1 0.489 0.0782 0.159 16104

Table 6: Average, standard deviation and coefficient of variance for SF.

Using information from Table 6 the appropriate level of granularity can now be chosen. For
Level 4, the task to processor ratio is smaller than one, so we immediately rejected pursuing

4Since the analysis is performed using the original, expensive Lisp-based SPAM system, we have extracted a
representative subset of the airport dataset to drive the analysis.

AFOSR-89-0199 FINAL REPORT 30

parallelism at this level. Levels 3 and 2 are very similar to each other in that they have enough
tasks, their variances are not large, and the task granularities are much larger than the expected
task management and communication overheads. Both levels, therefore, seemed to us to be
worthwhile candidates. Level 3 seemed somewhat more desirable as less effort appeared to be
required of us to achieve amounts of parallelism similar to that available in Level 2.

Level 1 was rejected for several reasons. First and most importantly, the additional effort
involved in decomposing the system at the granularity of Level 1 would not allow us to achieve
any more parallelism than at Level 2 or 3 because of the limitation on the number of processors.
Second, the task granularity is much smaller and thus closer to the overheads for task
management and communication than any of the other levels. Finally, the task to processor ratio
is on the order of 1000. This can have a detrimental effect due to the initialization overhead.
Our conclusion, then, was to exploit parallelism at the granularity of Levels 2 or 3.

6.3. Results from Using Task-Level Parallelism

Results for parallelizing Levels 2 and 3 are shown in Figure 17. The speedups are computed
against a baseline version, which represents an optimized uniprocessor implementation of the
SPAM LCC phase. It is interesting to note that this uniprocessor baseline version provides

approximately a 10 to 20 fold speedup over the original Lisp-based implementation for the LCC
phase.

The results of applying task-level parallelism are shown in Figure 17. Curves are shown for the
San Francisco dataset, as well as for two other airport datasets. The speed-up curves show near
linear speed-ups for both levels of decomposition. The speed-ups within a level are almost the
same among the three airport datasets. The maximum speed-up achieved using 14 processors is
11.90 fold in Level 3 and is 12.58 fold in Level 2.

; s ~ !, 1o
1200 - 1200 - /
oL : —— P
600 (7]
400 v
200 200
o8 |
o] 10 P . ane]]] 0 =7 .
Number of Task-level Processes Number of Tesk-level Procesess
Speedup at Level 3 Speedup at Leve! 2

Figure 17: Speed-ups varying the number of task-level processes.

For match parallelism, the theoretical maximum speed-up that can be obtained is limited
according to the percentage of total execution time spent in match. As SPAM spends less than
50% of its time in match, speed-ups due to match parallelism are limited to a factor of 2 or less.
This is exactly what is observed.

AFOSR-89-0199 FINAL REPORT 31

We believe that the potential for additional speed-ups in SPAM from task-level parallelism is
quite high; an expectation of 50 to 100 fold does not seem unreasonable, because:

e The tasks within any of the LCC decompositions are independent of one another;

¢ Several hundred tasks are available in Level 2;

¢ The task queue management overheads measured for Level 2 and Level 3 are very
low, especially with respect to the task granularity, and thus are not a factor.

Although our scheme of parallelization has been presented in the context of a non-match-
intensive system, the scheme is applicable to match-intensive systems as well. In match-
intensive systems, match parallelism will make a substantial contribution to the speed-ups.

6.4. Latest Work with Task-Level Parallelism
Our most recent work has been concentrated in three areas. These are:

1. Investigation of the causes of non-linear speed-ups;
2. Merging the results at the end of a run;
3. Preliminary use of the network-shared memory server.

Each of these topics are discussed below.

6.4.1. Non-linear Speed-ups

With the extremely low overheads associated with task management, the speed-ups obtained by
the SPAM/PSM system were somewhat lower than expected, although the system produced good
speed-ups (12.5 fold using 14 processors). This was particularly obvious when using higher
numbers of processors. To discover where the extra processing time is being spent, we have
been doing a detailed instrumentation of the SPAM/PSM system to measure contention on shared
resources (such as the task queue and the memory allocator). However, these instrumentation
results revealed that there is little, if any, contention for shared resources. We have since re-
programmed the system to eliminate any remaining contention and this resulted in no
improvement to the speed-up numbers. We are currently investigating other effects that could
cause a degradation in system performance. This currently includes determining whether paging
is contributing significantly to our loss in performance, and examining the behavior of various
MACH system calls in a parallel environment.

6.4.2. Result Merging

Our second area of work centered on further development of the SPAM/PSM system as a tool for
SPAM researchers. The previous version of the system would compute resuits (in parallel) and
place them in local working-memories, but would then throw these memories away when the
computation exited. Originally, the decision to ignore this (and other similar problems) allowed
us to concentrate on decomposition and speed-up issues. Now that it has been demonstrated that
good speed-up results are obtainable, we must address the engineering issues to make the system
usable. To this end, we have added code to the SPAM/PSM system to concurrently merge results
when the run terminates. A nice property of our solution is that it efficiently reuses processors,
thereby avoiding the introduction of a serial bottleneck at the end of a run. Other engineering
issues that will be addressed are multiple invocations of task-level processing (the current system
allows only pne initialization/parallel execution cycle), space problems (we need to use memory
more judiciously for some common data structures), and software problems (integration of newer
versions of SPAM and PSM code).

AFOSR-89-0199 FINAL REPORT : 32

6.4.3. Network-Shared Memory System

The results reported above show that large amounts of parallelism can be exploited in SPAM, and
thus, significantly larger numbers of processors could be employed in exploiting the parallelism.
The limitations on the number of processors on the Encore Multimax led us to our third area of
work, namely the investigation of the shared virtual memory system. A shared virtual memory
system can provide a single virtual address space among multiple machines, allowing the
programmer to view the networked machines as a loosely-coupled multiprocessor. Our local
computing environment has two separate Encore multimax machines, each with 16 processors.
Recently, the shared memory server became available on these machines, providing a 32
processor (16 from each Encore) virtual shared memory machine.

The latency across the two Encores with the virtual shared memory is reported to be 50 ms,
much lower than the granularity of the SPAM/PSM tasks. Furthermore, the SPAM/PSM tasks are
independent, with the processes requiring minimal communication through the task queue.
Therefore, the SPAM/PSM system appeared to be an ideal candidate for experimenting with the
shared virtual memory system.

Introducing shared virtual memory in the SPAM/PSM system turned out to be more complex than
our initial expectation. In the shared virtual memory system, the programmer has to be sensitive
to the allocation of data-structures to pages to avoid contention. This contention problem was
made acute due to false contention, i.e., two or more processes across the Encores contending for
objects located on the same page though not shared between them. At first, no attention was paid
to this problem — however, the overhead incurred from constantly page faulting across the
network due to false co~te tion brought our system to a halt just during the initialization. Two
separate approaches wer~ employed to solve this problem. We organized our data-structures in
the address space ir urder to eliminate the contentior across Encores. The designers of the
shared virtual memory system proceeded to provide some optimizations and heuristics in the
netmemory server to minimize the amount of data sent over the network to service a page fault.
For example, instead of shipping a full 8K page, the server ships only small, 64-byte segments of
the page that has been modified.

After the elimination of the false contention problem, and the introduction of other
optimizations, real speed-ups were possible. The speed-up results are shown in Figure 18. The
following observations can be made about these resuits:

1. Two separate speed-up curves are shown in Figure 18. The first one was obtained
from the shared virtual memory system. The second was obtained frora the pure
task-level parallelism system, i.e., the system without the shared virttal memory
(the speed-up curve from this system is indicated in Figure 18 as Pure TLP.) The
comparison of these two curves shows that real speed-ups are indeed possible with
the shared virtual memory system — underscoring the usefulness of the shared
virtual memory system for large applications. However, these speed-ups came
only after many rounds of optimizations in our system and in the shared virtual
memory Server.

2. As we can see from Figure 18, the speed-ups for the shared virtual memory system
are close to the pure task-level parallelism system, as long as all the processes are
running on a single Encore. As soon as we add a process on the remote Encore, we
see an abrupt change in the curve — which produces a translational effect on the
curve. This translational effect is equivalent to the loss of about 1.5 processors.
This performance hit comes from the overheads of communication across the
network.

AFOSR-89-0199 FINAL REPORT 33

Speedups
N

20.00

o—— I Shared Virtual
a— e Puetth

15.00

10.00

s 10 15 20 25
Number of Task-leve! Processes (2nd Encore over 13)

Speedup at Level 3

Figure 18: Speed-ups varying the number of processes using the virtual shared memory
Server.

3. We were only able to provide results for 22 processors — 13 on the first Encore
and 9 on the second. Our application placed severe demands on the MACH kernel,
preventing us from using all the processors. These robustness issues are being
addressed by the designers of the shared virtual memory system.

4. In our final optimized system, only a single task queue is present. The contention
for this task queue is minimal. Separate experiments were performed on these task
queues, which indicated that introducing separate task queues (one for each
Encore) would not change the results.

Further investigation of the shared virtual memory system continues. Also, as reported
previously, our experiments with the network shared-memory system provided real speed-ups
(15 fold using 22 processors) and many useful experiences. The software environment provided
on the Encore machines, however, has been undergoing revision and is somewhat unstable.
Because we feel that the distributed shared-memory paradigm has significant potential, we’ve
been working closely with researchers in the MACH operating system group to help them debug
and tune their software. Most of this work has involved running the netmemory TLP system with
various new pieces of system software (kernel, network memory server) to allow the maintainers
to measure the software’s performance. Once this software environment stabilizes, we can
continue analysis and experimentation on the SPAM/PSM netmemory system.

AFOSR-89-0199 FINAL REPORT 34

7. Open Issues

SPAM supports a variety of research activity within the context of image understanding. Itis a
research vehicle for our knowledge acquisition work, experience with systems integration, and
further research in task-level parallelism [11,9]. As such, there are many promising areas of
future work. Several of these are outlined below.

As with any system, testing on many cases aids in finding implicit assumptions. More airport
examples would not only help in refining SPAM’s knowledge base, but this would allow
exploration of categories within the airport domain. For example, it may not be as effective to
have a "general” airport knowledge base as it would to have a separate knowledge base for each
one of military, international, and regional airports.

In addition to other airports, different segmentation methods will likely provide SPAM with new
challenges. We have, at various times, experimented with using segmentations obtained from
automatic methods, such as some of the feature extraction systems being developed in our
group [12, 13, 14, 15]. Issues include how much of the knowledge has to be tailored according
to the source of the segmentation, as well as what effects are produced by errors in the
segmentation. Such feature extraction systems could also be used in the later phases of SPAM as
domain experts, assisting in the disambiguation of conflicting hypotheses.

Expanding some of our work in automatic constraint generation for SPAM, such as was done with
RTFANALYZE and FAANALYZE, is another promising area of future research. Applying
clustering techniques may allow the system to automatically filter out constraints that result in
little or no discrimination among competing hypotheses. One could augment such a system with
interactive capabilities so that it could suggest rules to a user and allow that user to reject or
refine them.

Much work has been done on performance evaluation within the SPAM system. Until recently,
this work has been focused on manual or interactive evaluation. An diagnostic system that
would evaluate SPAM’s results and automatically (or semi-automatically) correct or suggest rules
would be valuable. This is appealing for several reasons:

e There are large numbers of constraints, and the interactions between constraints
must be considered.

¢ A consistent approach to rule addition/modification could help to keep SPAM’s
knowledge base more consistent.

e Machine learning efforts, like those suggested above, can be focussed in the areas of
greatest need, instead of considering all data for all possible cases.

In addition to improving the quality of the functional-areas produced by SPAM, we need to
intelligently evaluate the coherence of each functional-area, as well as to compare them to one
another. One method for doing this is to examine the support for each hypothesis and compare it
to a "randomly” supported hypothesis. If this or other methods are found to be effective,
functional-areas can be ranked, unpromising functional-areas can be excised, and model-
generation can proceed based on this ranking.

Finally, there is a great body of machine learning research, and work on validation and

verification is becoming more commonplace [3]. However, little research has been done in
combining these two areas. We are now beginning preliminary investigations in this area.

AFOSR-89-0199 FINAL REPORT 35

8. Conciusions

Our ongoing research in the automated analysis of complex aerial imagery relies heavily on our
ability to provide spatial and structural constraints, encoded as rules, to SPAM, our knowledge
based interpretation system. Such knowledge can be expected to come from a variety of sources,
including site/architectural design rules, map databases, and human experience.

Large-scale knowledge-based vision systems require specialized tools for both knowledge
acquisition and result evaluation. As we have seen, this research has focused on the interactive
acquisition of spatial and functional knowledge as well as on fully automated techniques. We
have shown preliminary results based on our experiments with airport scenes and also
demonstrated the importance of manually compiled ground truth scene segmentations to support
rigorous performance analysis tools. The ability to generate accurate evaluations of system
performance guides our research along paths that are likely to prove most productive.

Issues in system support for the large computational resources required for high-level image
understanding require parallelism from both language support (CParaOPS5), and hardware
including shared memory and distributed memory multiprocessors. This means that research at
the frontiers needs for be vertically integrated, pushing both the computational science as well as
the basic image interpretation domain.

Further research is needed in basic computer vision and image understanding, the architecture of
knowledge-based systems, and their integration with spatial databases. We believe that our
research addresses some of the most important issues in these areas and that we are progressing
toward the development of competent automated scene analysis systems.

9. Acknowledgements

We are grateful for the efforts of our COTR, Dr. Abraham Waxman, in many discussions
concerning basic research directions and technology transfer. We also acknowledge the support
of Lt. Col. Bob Simpson and Dr. Rand Waltzman of ISTO, Defense Advanced Research Projects
Agency (DARPA) for the funding of this research.

Wilson Harvey, Matthew Diamond, and Milind Tambe contributed technical material to this

final report. Other members of the Digital Mapping Laboratory helped provide a congenial
working environment.

AFOSR-89-0199 FINAL REPORT) 36

10. Bibliography

1.

10.

11.

12.

13.

14.

McKeown, D.M., Harvey, W.A. and McDermott, J., ‘‘Rule Based Interpretation of Aerial
Imagery’’, IEEE Transacto»s on Pattern Analysis and Machine Intelligence, Vol.
PAMI-7, No. 5, September 153, pp. 570-585.

David McKeown, Aviad Zlotnick, Frederic Perlant, Yuan Hsieh, Wilson Harvey, and
Matthew Diamond, ‘‘Research in Digital Mapping’’, Computer Science Research
Review, Vol. 88/89, 1988/1989, pp. 39-63.

Gupta, U., Validating and Verifying Knowledge-Based Systems, IEEE Computer Society
Press, 1991.

Matsuyama, T.,, ‘A Structural Analysis of Complex Aerial Photographs’’, Tech. report,
Department of Electrical Engineering, April 1980, Ph.D Thesis

Shang-Shouq Vincent Hwang, Evidence Accumulation for Spatial Reasoning in Aerial
Image Understanding, PhD dissertation, University of Maryland, 1984.

Huertas, A., Cole, W., & Nevatia, R., ‘“Using Generic Knowledge in Analysis of Aerial
Scenes: A Case Study’’, Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, Morgan Kaufmann Publishers, Inc., August 1989, pp. 1642-1648.

Strat, T., & Smith, G., ‘‘Core Knowledge Systems: Storage and Retrieval of Inconsistent
Information™’, Proceedings of the DARPA Image Understanding Workshop, Morgan
Kaufmann Publishers, Inc., April 1988, pp. 660-665.

McKeown, D.M., Harvey, W.A_, Wixson, L., ‘‘Automating Knowledge Acquisition For
Aerial Image Interpretation’’, Computer Vision, Graphics and Image Processing, Vol.
46, No. 1, April 1989, pp. 37-81.

Harvey, W., Kalp, D., Tambe, M., McKeown, D. and Newell, A., ‘“The Effectiveness of
Task-Level Parallelism for Production Systems’’, Journal of Parallel and Distributed
Computing, Vol. (to appear), December 1991.

Wilson Harvey, Dirk Kalp, Milind Tambe, David McKeown, Allen Newell, ‘‘Measuring
the Effectiveness of Task-Level Parallelism for High-Level Vision’’, Proceedings of the
DARPA Image Understanding Workshop, Morgan Kaufmann, May 1989, pp. 916-933.

Harvey, W., Kalp, D., Tambe, M., McKeown, D. and Newell, A., ‘‘The Effectiveness of
Task-Level Parallelism for High-Level Vision’’, Proceedings of the 2nd ACMISIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), March 1990,
pp. 156-167.

McKeown, D.M. and Denlinger, J. L., ‘‘Cooperative Methods for Road Tracking in
Aerial Imagery’’, Proceedings IEEE Computer Vision and Pattern Recognition
Conference, June 1988, pp. 662-672.

R. B. Irvin and D. M. McKeown, ‘‘Methods for exploiting the relationship between
buildings and their shadows in aerial imagery’’, IEEE Transactions on Systems, Man and
Cybernetics, Vol. 19, No. 6, November 1989, pp. 1564-1575.

Shufelt, J.A., and McKeown, D.M., “‘Fusion of Monocular Cues to Detect Man-Made
Structures in Aerial Imagery’’, Tech. report CMU-CS-90-194, School of Computer
Science, September 1990.

AFOSR-89-0199 FINAL REPORT 37

15. Hsieh, Y.C., McKeown, D.M., and Perlant, F.P., ‘“‘Performance Evaluation of Scene

Registration and Stereo Matching for Cartographic Feature Extraction’’, [EEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-14, No.
1, January 1992, pp. to appear.

AFOSR-89-0199 FINAL REPORT 38

